FinTech中国量化金融行业白皮书(2019)

作者:http://www.wangjiqua 2019-04-27 11:50阅读:

资料来源:券商研报

2.6 指数增强策略

量化投资在海外已有三十多年的历史,而国内量化基金的发展则明显滞后。在2010年之前,国内量化基金市场发展缓慢,公募基金产品以指数型基金为主,私募产品主要包括ETF套利和封转开套利等。量化基金真正为国内投资者所关注是在2008年金融危机期间,由于美国次贷危机,加上国内期指推出预期,许多海外量化从业人员归国寻找发展机会,为市场提供了大量专业化人才。到了2011年之后,量化基金开始快速发展,随着量化选股和多因子体系在国内落地以及股指期货和融资融券推出,公募基金中指数增强和主动量化型产品增多,量化对冲类产品如期现套利型产品得到快速发展。但2015年6月股指期货受限、保证金比例提升,使得量化对冲类策略受到了比较大的冲击,基金管理人开始向其他方向拓展,促进了如CTA、期权策略、FOF等量化产品的丰富。此外,商品期权、原油期货等衍生品陆续上线,量化基金开始从原来的低风险量化对冲策略转向主动量化策略。 截止2018年9月,国内私募量化基金管理规模估算约2000亿元,公募量化基金(不含被动指数型基金)产品规模约1200亿元。

2.主流量化交易策略

2.4 事件驱动策略

纵观目前阶段下的金融科技创新方向,我们认为,大数据、人工智能和区块链将是继互联网/移动互联网之后的Fintech发展的三大核心技术基础。如大数据可以运用于大数据贷款、反欺诈、用户画像和精准营销方面,人工智能可以运用于智能客服、智能投顾、智能风控等,区块链技术可以运用于对账与结算、电子合同、智能合约等。除此以外,还有云计算、数据库、爬虫技术等,都将对金融业产生进一步的变革与创新。

资料来源:券商研报

资料来源:券商研报

2.5 市场中性策略

一般来说,主动型量化策略往往有较高的夏普比率,但策略容量小、成本高,被动型或指数型量化策略则相反。不同的量化投资基金追求不同的风险和收益,因此量化投资策略极为多样化,在此我们分享一些主流量化交易策略。

随着大数据、云计算、人工智能对金融业的变革,传统的金融业正与信息技术、数学模型、数据分析相结合,向量化金融发展。量化金融包含量化交易、量化研究、量化定价、量化风控等各个方面。实际上,量化金融已经存在很长时间,如量化投资在海外已经有三十多年的历史,并且由于量化模型的纪律性和系统性,量化投资收益稳定,市场规模和份额不断扩大,得到了越来越多投资者的认可。

期权策略产品和CTA策略产品、事件驱动策略产品等一样,和主流量化产品的相关度较低,有利于资产分散化投资。由于期权本身产品的复杂性,期权策略也是复杂多样的。期权策略主要有期权合成套利、期权买卖平价套利、期权价值边界套利、隐含波动率与实际波动率相对价值套利等,其中期权合成套利又包含了牛市价差、熊市价差、跨式期权、蝶式期权等等组合方式。

我们来看一个基于Google Trends的大数据舆情分析策略,下图为策略回测,可见基于Google Trends的策略远远优于单纯购买并持有。该策略的思想是,如果当周的“Debt”搜索量大于过去三周平均搜索量,则做空道琼斯指数,持仓一周;如果当周的“Debt”搜索量小于过去三周平均,则做多道琼斯指数。在国内,类似Google Trends的指数有百度指数等,可以作为搜索引擎指数进行投资。

资料来源:Wind

传统投资策略一般分为主动投资策略和被动投资策略,被动投资往往选择跟踪某一指数,风险较低。然而全完被动跟踪指数往往收益也较低,因此指数增强策略(或称Smart Beta、Strategy Beta、Enhanced Beta)受到了越来越多机构投资者的欢迎。指数增强策略是指在被动跟踪指数的基础上,通过主动管理的办法如优化选股和优化权重,以达到获取超额收益或降低风险的目标,即“增强”指数的效果。

市场中性策略是指同时构建多头和空头头寸以对冲市场风险,从而构成独立于大盘变动的股票组合。市场中性策略的通常做法是通过多因子模型选股确定多头股票组合,同时用空头股指期货等进行对冲,构建Beta接近于0的投资组合,从而只保留基金的Alpha收益。

在介绍主流量化交易策略之前,需要先知道资产收益的拆分。资产收益通常可以拆分为Beta收益和Alpha收益,Beta为市场风险补偿,Alpha则是投资组合的超额收益。JPMorgan将传统的Alpha进一步拆分,其中将通过指数权重优化和选股优化等指数增强方式取得的超额收益称为Enhanced Beta,其中通过投资相关性较低的另类大类资产取得的超额收益称为Alternative Beta,剩下的Alpha收益才是无风险的超额收益True Alpha。

人工智能在金融领域中的应用,相较于大数据而言的核心突破在于深度学习、智能分析和智能决策。大数据、云计算、智能硬件以及后续的区块链技术等都是支撑人工智能上层技术的基础。在金融领域,人工智能主要有以下四类应用:①自动报告生成,②金融智能搜索,③量化交易,④智能投顾。

资料来源:券商研报

例如高管增持事件,我们可以采用的一种策略是:在上市公司公布高管增持公告后,立刻买入并持有一个月,回测该策略是否存在超额收益。

统计套利主要包含跨资产套利、跨市场套利等。以跨境ETF套利为例,下图为iShares China Large Cap UCITS (FXC)跨境指数基金,该ETF的成分股为香港交易所上市的按市值排名前50只中国股票,即投资红筹股、大盘股。

下图展现了两个FOF组合的净值曲线,投资组合A2为“60%股票多头+40%固定收益”,每年再平衡,投资组合B2为“40%股票多头+30%固定收益+30%CTA”,每年再平衡。可见加入CTA策略后FOF组合的年化收益率得到了明显提高,年化波动率和最大回撤下降,夏普比率从原先的0.98提高为1.52。

不同于成熟的海外市场,我国期权市场才刚刚起步。2015年2月9日,我国首个场内期权产品上证50ETF期权合约正式上市交易,标志着我国资本市场期权时代的来临。2017年以来,期权市场逐渐发展壮大,豆粕和白糖期权上市交易且流动性日渐提升,上证50ETF期权成交量快速增长,预计未来还会有更多的商品期权、金融期权品种上市。随着期权品种数量的增加和流动性的提升,期权策略将会得到可观的发展。

此外,我们也可以基于分析师评级作为事件驱动策略,如选取中证800股票池中,持续6个月有分析师发布含有目标价报告的股票。其思路是分析师持续发布含有目标价报告,说明该个股长期被分析师看好,基本面较优良。同时该策略对分析师报告的数量没有特别的约束,兼顾了大小市值的个股,对市场大小盘风格切换有较强的适应性。从策略回测收益来看,从2012 年至2018年,该策略年化收益超过20%,相对中证800 指数年化超额收益为10.45%。从换手率指标来看,该策略的年化换手率在4.5%上下波动,说明该组合的成分股平均持股时间较长,是一个精选个股、中长期持有的投资策略。

统计套利就是基于某投资品种历史价格数据,寻找其价格规律,从而在一定概率上获取套利机会。常见思路是找出相关性较高的两个投资品种,根据它们之间长期均衡的协整关系,当价差偏离一定程度时,买入被相对低估的品种,卖空被相对高估的品种,等到价差回归均衡时平仓获利。有别于无风险套利,统计套利是根据资产的历史价格规律进行的风险套利,其风险在于资产间的这种协整关系在未来是否会继续存在。

指数增强基金是指数型基金发展的新阶段,从全球市场看,指数增强策略普及度不断提高。根据ETF.com统计结果,截止2018年12月21日,美国有1025只Smart Beta ETF,总规模为8239亿美元;BlackRock预测到2020年,Smart Beta ETF的资产规模将达到1万亿美元。我国被动指数产品相较于海外市场比较滞后,从2006年华泰柏瑞红利ETF发行,截止2018年11月27日,国内共发行了68只指数增强型产品,累计规模245亿元。

2.3 CTA交易策略

资料来源:量化金融分析师AQF项目

截止2018年三季度,国内量化私募产品主要集中在市场中性策略、CTA策略、指数增强策略。

对于公募基金业绩披露事件,如果某只股票被多数公募基金购买,则说明多数公募基金看好该只股票。根据业绩披露事件,可以构建高共识大小盘组合,即流通市值排在前50%的重仓股池子中,选择持有主动基金数目最多的前50只标的作为高共识大盘组合。而流通市值排在后50%的重仓股池子中,选择持有主动基金数目最多的前50 只标的构建高共识小盘组合。两个策略的回测收益如下图所示。

从全球看,目前CTA市场最主要的策略是系统化策略,也就是量化策略,系统化CTA基金几乎占全部CTA基金规模的90%。与国际市场不同的是,国内CTA产品中主观策略类产品数量略多于量化产品,但无论是主观策略产品还是量化产品,趋势型策略的数量都要远大于套利型策略。

金融科技在中国的发展阶段,可以大致分为早期信息化阶段、互联网阶段、移动化阶段、智能化阶段和未来全面变革五个阶段。目前金融行业已经逐渐迈入“智慧金融”阶段,金融机构对科技人员、资源的投入逐渐加深。大数据、云计算、人工智能等前沿技术将进一步改造金融行业营销、风控、投研、投顾、产品创新、客户管理等环节。

作为量化金融从业者,不仅需要过硬的编程技术和数学基础,更重要的是对金融市场的深刻理解,否则无论数学、编程多厉害,很可能在做无用功,不能得到好的效果。量化金融行业需要的是编程、数学和金融兼修的人才,因此如何进入量化金融行业是许多纯金融或纯理工背景的从业者感兴趣的话题。在这里我们推荐的量化金融的入门书籍有:《Python金融大数据分析》、《Python金融实战》、《Python金融数据分析》、《Algorithmic Trading》、《信号与噪声》等进行学习。此外,如果时间比较紧张,也可以通过报名量化金融分析师AQF证书进行系统性的学习,该证书目前为量化金融领域较为权威的水平认证证书,该证书可作为量化金融职业能力考核的证明,以及专业技术人员岗位聘用、任职、定级和晋升职务的重要依据。

除了以上三种主流方法,指数增强策略也可以通过配合衍生金融工具或其他方式增强,包括打新、股指期货、融资融券、期权、可转债等。如中证500指数增强产品常通过买入股指期货获得基差收益,同时降低资金占用率。

我们也可以对高管增持事件进行一定的优化,如可以增持公告前跌幅最大的一组股票,公告后30日的累计超额收益约为5%,公告后60日的累计超额收益接近10%,其超额收益要比简单的高管增持事件明显。

热门文章
订阅栏
合作联系